In order to solve a right triangle, we use SOHCAHTOA:
sine(theta)=opposite/hypotenuse cosine(theta)=adjacent/hypotenuse tangent(theta)=opposite/adjacent
You can only use these formulas for right triangles. You can use any angle except the 90 degree.
Example 1:
- cosine 25 degrees=c/8
- c=16.314
- sin 25 degrees=18/b
- b=24.267
Example 2:
- cos 37 degrees=25/x
- x=31.303
- tan 37 degrees=y/25
- y=18.839
Example 3: Find the measures of the acute angles of a 3-4-5 right triangle.
- sin x=3/5
- x=sin^-1(3/5)
- =36.861 degrees
- tan x=4/3
- x=tan^-1(4/3)
- =53.130 degrees
Example 4: The legs of an isosceles triangle are each 21 cm long and the angle between them has measure 52 degrees. What is the length of the third side?
- sin 26 degrees=x/21
- x=9.206 cm
- 9.206(2)
- =18.412 cm
- sin 25 degrees=b/18
- b=7.607
- cos 25 degrees=c/18
- c=16.314
-Jordan Duhon
No comments:
Post a Comment