Sunday, October 16, 2011

9-1

9-1 Solving Right Triangles

In order to solve a right triangle, we use SOHCAHTOA:
sine(theta)=opposite/hypotenuse cosine(theta)=adjacent/hypotenuse tangent(theta)=opposite/adjacent
You can only use these formulas for right triangles. You can use any angle except the 90 degree.

Example 1:

  • cosine 25 degrees=c/8

  • c=16.314

  • sin 25 degrees=18/b

  • b=24.267

Example 2:


  • cos 37 degrees=25/x

  • x=31.303

  • tan 37 degrees=y/25

  • y=18.839

Example 3: Find the measures of the acute angles of a 3-4-5 right triangle.



  • sin x=3/5

  • x=sin^-1(3/5)

  • =36.861 degrees

  • tan x=4/3

  • x=tan^-1(4/3)

  • =53.130 degrees

Example 4: The legs of an isosceles triangle are each 21 cm long and the angle between them has measure 52 degrees. What is the length of the third side?



  • sin 26 degrees=x/21

  • x=9.206 cm

  • 9.206(2)

  • =18.412 cm

Example 5: In Triangle ABC,



  • sin 25 degrees=b/18

  • b=7.607

  • cos 25 degrees=c/18

  • c=16.314

-Jordan Duhon

No comments:

Post a Comment