We can use ten different trigonomic formulas in this section:
- sin 2(a) = 2 sin(a) cos(a)
- cos 2(a) = cos^2(a) - sin^2(a)
- cos 2(a) = 1 - 2 sin^2(a)
- cos 2(a) = 2 cos^2(a) - 1
- tan 2(a) = 2 tan(a)/1 - tan^2(a)
- sin a/2 = +/- square root of (1 - cos(a)/2)
- cos a/2 = +/- square root of (1 + cos(a)/2)
- tan a/2 = +/- square root of (1 - cos(a)/1 + cos(a))
- tan a/2 = sin(a)/1 + cos(a)
- tan a/2 = 1 - cos(a)/sin(a)
Example 1: Simplify the given expression.
1) 2 cos^2 10 - 1
- cos 2(10)
- cos(20)
2) cos^2 4A - sin^2 4A
- cos 2(4A)
- cos (8A)
Example 2: Find the exact value of the given expression.
1) 1 - 2 sin^2(7pi/12)
- cos 2(105)
- cos(210)
- Now you must find a reference angle: 210 - 180 = 30
- square root of 3/2
Example 3: If sin A = 5/13, find sin 2A.
- sin 2A = 2 sin A cos A
- sin 2A = 2 (5/13) (12/13)
- (10/13) (12/13)
- 120/169
-Jordan Duhon
No comments:
Post a Comment